HMGB1 promotes differentiation syndrome by inducing hyperinflammation via MEK/ERK signaling in acute promyelocytic leukemia cells
نویسندگان
چکیده
Differentiation therapy based on all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) for the treatment of acute promyelocytic leukemia (APL) is complicated by the development of differentiation syndrome (DS), which can be fatal. We examined the role of HMGB1 (high-mobility group box 1) in DS using both in vitro and in vivo models. HMGB1 and the pro-inflammatory cytokines IL-1β and TNF-α were gradually released from NB4 and HL-60 cells treated with ATRA and/or ATO. Similarly, higher serum HMGB1 levels positively correlated with the clinical status of DS patients. Exogenous HMGB1 promoted rapid release of IL-1β and TNF-α as well as elevated expression of ICAM-1, without altering cell differentiation. Exogenous HMGB1 also enhanced pulmonary infiltration and up-regulated ICAM-1 expression in the ATRA-treated DS mouse. Pharmacological inhibition or depletion of MEK1/2 reduced the cytokine levels and suppressed expression of ICAM-1 and the adhesion of HMGB1-treated NB4 cells to endothelial cells, implicating MEK/ERK signaling in the response to HMGB1 during DS. Treatment with a HMGB1-neutralizing antibody reduced secretion of TNF-α and IL-1β, arrested the elevation of ICAM-1 and blunted the activation of ERK1/2 in ATRA-induced NB4 cells. The HMGB1-neutralizing antibody also decreased ICAM-1 expression and reduced mortality in ATRA-treated DS model mice. These findings demonstrate that released HMGB1 is central to DS, and that targeting HMGB1 may be of therapeutic value in the treatment of DS.
منابع مشابه
MEK blockade converts AML differentiating response to retinoids into extensive apoptosis.
The aberrant function of transcription factors and/or kinase-based signaling pathways that regulate the ability of hematopoietic cells to proliferate, differentiate, and escape apoptosis accounts for the leukemic transformation of myeloid progenitors. Here, we demonstrate that simultaneous retinoid receptor ligation and blockade of the MEK/ERK signaling module, using the small-molecule inhibito...
متن کاملP-111: EGFR, ERK, MEK Genes Expression Level in Cumulus Cells of PCOS Women Compared with Healthy Women
Background Poly cystic ovarian syndrome (PCOS) is known as a common endocrine disorder in women at reproductive ages and may cause developmental abnormality in oocyte. ERK has found as a regulator protein of Gap junctions (GJ) function and the level of exchanges between two neighbors cells, for example oocyte and surrounding cumulus cells (CCs) in the mammalian ovary. Such exchange is essential...
متن کاملCombined staurosporine and retinoic acid induces differentiation in retinoic acid resistant acute promyelocytic leukemia cell lines
All-trans retinoic acid (ATRA) resistance has been a critical problem in acute promyelocytic leukemia (APL) relapsed patients. In ATRA resistant APL cell lines NB4-R1 and NB4-R2, the combination of staurosporine and ATRA synergized to trigger differentiation accompanied by significantly enhanced protein level of CCAAT/enhancer binding protein ε (C/EBPε) and C/EBPβ as well as the phosphorylation...
متن کاملPromyelocytic leukemia retinoid signaling targets regulate apoptosis,tissue factor and thrombomodulin expression.
BACKGROUND AND OBJECTIVES Retinoids are involved in cell differentiation, morphogenesis, proliferation and antineoplasic processes. Thus, the retonoic acid receptor (RARalpha) agonist, AM80, regulates tissue factor (TF), thrombomodulin (TM) expression and granulocytic differentiation in promyelocytic cells, while the RARgamma-selective retinoid, CD437, inhibits in vitro cell proliferation and i...
متن کاملDifferentiation-Inducing Activity of the Phyto-polyphenols Epigallocatechin-3-gallate and Kaempferol on NB4 Cells
Background and Objective: The rate of survival in acute promyelocytic leukemia (APL) can dramatically improve, if the patients receive all-trans-retinoic acid (ATRA) treatment. However, this drugchr('39')s toxicity is a major problem in APL treatment. Previous researches have demonstrated that phyto-polyphenols such as epigallocatechin gallate (EGCG) and kaempferol cause apoptosis in hematopoie...
متن کامل